From Adventure to Business

Hansjörg Dittus
DESIS / MUSES TIMELINE

2014 / 2015
MUSES / DESIS
Start Mission

7. June 2017
MUSES installation on ISS

29. June 2018
DEISIS launch from Cape Canaveral to ISS via SpaceX Falcon

27.-28.08 2018
Installation of DESIS in MUSES. Start Commissioning Phase

23 October 2019
@ IAC Washington
Start operationell Phase (official announcement)

29.09.–01.10.2021
1st DESIS User Workshop (online)

We are here
2021
2022
2023
2024

Design, Development, Implementation, Test
Commissioning
Operations

Nomine End

© Gravity
Data Access

Commercial data: Teledyne Brown Engineering, Scientific / Humanitarian data: DLR
DESIS Instrument

- Hyperspectral instrument consisting of a Three-Mirror-Anastigmat (TMA) telescope combined with an Offner-type spectrometer

<table>
<thead>
<tr>
<th>Mission Instrument</th>
<th>MUSES/DESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target lifetime</td>
<td>2018-2023</td>
</tr>
<tr>
<td>Off-nadir tilting</td>
<td>-45° (backboard) to +5° (starboard), -40° to +40° (by MUSES and DESIS)</td>
</tr>
<tr>
<td>Spectral range</td>
<td>400 nm to 1000 nm</td>
</tr>
<tr>
<td>Spectral Sampling (res., acc., bands)</td>
<td>2.55 nm, 0.5 nm, 235 bands. Binning: 118, 79, 60 bands</td>
</tr>
<tr>
<td>Spectral response</td>
<td>Gaussian shape, 3.5 nm FWHM</td>
</tr>
<tr>
<td>Software Binning (sampling distance, number bands)</td>
<td>Binning 2 (5.1 nm, 118 bands)</td>
</tr>
<tr>
<td></td>
<td>Binning 3 (7.6 nm, 79 bands)</td>
</tr>
<tr>
<td></td>
<td>Binning 4 (10.1 nm, 60 bands)</td>
</tr>
<tr>
<td>Radiometry (res., acc.)</td>
<td>13 bits, ~10%</td>
</tr>
<tr>
<td>Spatial (res., swath)</td>
<td>30 m, 30 km (@ 400 km)</td>
</tr>
<tr>
<td>SNR (signal-to-noise)</td>
<td>195 (w/o bin.) / 386 (4 bin.) @ 550 nm</td>
</tr>
<tr>
<td>Instrument (mass)</td>
<td>93 kg</td>
</tr>
<tr>
<td>Capacity (km, storage)</td>
<td>2360 km per day, 225 GBit</td>
</tr>
</tbody>
</table>

FEE: Front End Electronic
FPA: Focal Plane Array
TMA: Three Mirror Anastigmat
POI: Pointing Unit
Huntsville, Alabama
03.09.2018 34°47´27.6´´N 87°08´38.8´´W

Example
Data Evaluation
One week after DESIS Installation
Vegetation

Huntsville, Alabama

03.09.2018 34°47´27.6´´N 87°08´38.8´´W

Vegetation

Forest

Wheeler Reservoir

Soil

City Huntsville

Athens

Agriculture fields

River Tennessee
Huntsville, Alabama

03.09.2018 34° 47' 27.6" N 87° 08' 38.8" W

Suspended Matter
Colored dissolved organic matter (CDOM)

Huntsville, Alabama
03.09.2018 34° 47′ 27.6″ N 87° 08′ 38.8″ W
Example: Rare Earth Elements (REE) @ Mt. Pass mine (USA / California)

Gregg Swayze from USGS Spec Lab

“So this may be the first demonstration of REE detection from space but may also have high enough resolution and SNR to allow differentiation of individual REE minerals”

Element: Neodym (Nd); Class: Lanthanoide
Usage: Magnets, Laser, Glas,…
DESIS Data Products

Archive
- L1A Raw Data (prepared for selection & ordering & processing)

Analysis Ready Data
- L1B Top-Of-Atmosphere (TOA) Radiance
- L1C Geocoded & Orthorectified
- L2A Bottom-of-Atmosphere (BOA) Reflectance

- Land Mask
- Water Mask
- Cloud Mask
- Cloud Shadow over land
- Haze over land
- Haze over water
- AOT Map
- WV Map

DESIS L2A

[Map Illustration]
Spectral calibration after smile correction is typically better than ~0.5 nm.

DESIS Data Products - Quality

Absolute radiometric calibration is well within ~5% at the Top-of-Atmosphere (TOA) radiance and TOA reflectance level when validated against RadCalNet.

Geometric accuracy with respect to Landsat-8 reference is ~20 m (< 1 pixel) linear RMSE.

Agreement of Bottom-of-Atmosphere (BOA) reflectance within ~5% to RadCalNet, Sentinel-2 and field campaign data from Pinnacles site (Australia).

Analysis Ready Data

- L1B Top-Of-Atmosphere (TOA) Radiance
- L1C Geocoded & Orthorectified
- L2A Bottom-of-Atmosphere (BOA) Reflectance

Spectral calibration after smile correction is typically better than ~0.5 nm.
Status of Data Acquisitions (July 2021)

World
~60,000 scenes processed (archive)
<35% of the land surface of the Earth
~29 TB data in the archive

Note: DESIS is not a mapping mission

~14600 scenes USA

~1620 scenes Germany
What are the current scientific applications of DESIS?

Currently ~50 international teams are using DLR’s science access to DESIS data (plus additional commercial customers of TBE)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Number of proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Thematic Exploitation & Material Composition</td>
<td>2</td>
</tr>
<tr>
<td>Landcover & vegetation</td>
<td>5</td>
</tr>
<tr>
<td>Water Resources</td>
<td>7</td>
</tr>
<tr>
<td>Ocean Applications</td>
<td>4</td>
</tr>
<tr>
<td>Coastal Applications</td>
<td>5</td>
</tr>
<tr>
<td>Calibration</td>
<td>1</td>
</tr>
<tr>
<td>Natural Resources</td>
<td>8</td>
</tr>
<tr>
<td>Geology</td>
<td>3</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>2</td>
</tr>
<tr>
<td>Others (e.g. methods development, data fusion)</td>
<td>4</td>
</tr>
</tbody>
</table>

- DLR is responsible for the scientific data distribution
- Tasking new data is based on a proposal process
- Data available for scientists worldwide

~16 proposals (40%) are related to water applications

Spectral range 400 – 1000 nm